The calculated distance is \(D^2 = \frac{1 - COR (`x`')}{2}\)

pearson.dist(x)

Arguments

x

a matrix

Value

distance matrix (distance object)

Details

The distance between the rows of x is calculated. The possible values range from 0 (prefectly correlated) over 0.5 (uncorrelated) to 1 (perfectly anti-correlated).

References

S. Theodoridis and K. Koutroumbas: Pattern Recognition, 3rd ed., p. 495

See also

Author

C. Beleites

Examples

pearson.dist(flu[[]])
#> 1 2 3 4 5 #> 2 0.0006321414 #> 3 0.0004898572 0.0002887337 #> 4 0.0004424217 0.0002664884 0.0001705457 #> 5 0.0004852460 0.0002368675 0.0001909183 0.0001149165 #> 6 0.0004242441 0.0002416168 0.0001591670 0.0001208129 0.0001102328
pearson.dist(flu)
#> 1 2 3 4 5 #> 2 0.0006321414 #> 3 0.0004898572 0.0002887337 #> 4 0.0004424217 0.0002664884 0.0001705457 #> 5 0.0004852460 0.0002368675 0.0001909183 0.0001149165 #> 6 0.0004242441 0.0002416168 0.0001591670 0.0001208129 0.0001102328