The calculated distance is \(D^2 = \frac{1 - COR (`x`')}{2}\)
pearson.dist(x)
x | a matrix |
---|
distance matrix (distance object)
The distance between the rows of x
is calculated. The possible
values range from 0 (perfectly correlated) over 0.5 (uncorrelated) to 1
(perfectly anti-correlated).
S. Theodoridis and K. Koutroumbas: Pattern Recognition, 3rd ed., p. 495
C. Beleites
pearson.dist(flu[[]])#> 1 2 3 4 5 #> 2 0.0006321414 #> 3 0.0004898572 0.0002887337 #> 4 0.0004424217 0.0002664884 0.0001705457 #> 5 0.0004852460 0.0002368675 0.0001909183 0.0001149165 #> 6 0.0004242441 0.0002416168 0.0001591670 0.0001208129 0.0001102328pearson.dist(flu)#> 1 2 3 4 5 #> 2 0.0006321414 #> 3 0.0004898572 0.0002887337 #> 4 0.0004424217 0.0002664884 0.0001705457 #> 5 0.0004852460 0.0002368675 0.0001909183 0.0001149165 #> 6 0.0004242441 0.0002416168 0.0001591670 0.0001208129 0.0001102328